APh 156A: Organization and Policies

Instructor: Paul M. Bellan, 126 Watson, x 4827, MS 128-95, email pbellan@its.caltech.edu
Teaching Assistant: Rory Perkins, 130 Watson, rory@its.caltech.edu

Class list: Please fill out the class list and also fill out your timetable.

Grading policy: Homework 40%, exams 60% (see copy of previous year grading scheme for reference)

Collaboration policy: see attached form

Text: “Fundamentals of Plasma Physics” by P. M. Bellan

Syllabus: The class will be all year (fall, winter, spring quarters) and slightly less than one third of the text will be covered each term so that most, but not all of the text will be covered. The table of contents of the text is given on the following pages. Homework will be assigned as appropriate to the material that has been covered so that the homework load will be variable but significant. A small portion of the homework will involve simple numerical calculations and assistance will be provided for any students unfamiliar with these methods.

Additional Reference books (on reserve in library):

1. Schmidt, The Physics of High Temperature Plasmas
2. Krall and Trivelpiece, Plasma Physics
3. Nicholson, Introduction to Plasma Theory

Prerequisites:

It is assumed that students have some familiarity with electricity and magnetism, Maxwell’s equations, ordinary and partial differential equations, complex analysis, linear algebra, classical mechanics. However, these concepts will be briefly reviewed each time they are first used and students unfamiliar with some of these concepts will be assisted as appropriate.
Contents

Preface
page xiii

1 Basic concepts
page 1
1.1 History of the term “plasma”
1.2 Brief history of plasma physics
1.3 Plasma parameters
1.4 Examples of plasmas
1.5 Logical framework of plasma physics
1.6 Debye shielding
1.7 Quasi-neutrality
1.8 Small- vs. large-angle collisions in plasmas
1.9 Electron and ion collision frequencies
1.10 Collisions with neutrals
1.11 Simple transport phenomena
1.12 A quantitative perspective
1.13 Assignments

2 The Vlasov, two-fluid, and MHD models of plasma dynamics
page 34
2.1 Overview
2.2 Phase-space
2.3 Distribution function and Vlasov equation
2.4 Moments of the distribution function
2.5 Two-fluid equations
2.6 Magnetohydrodynamic equations
2.7 Summary of MHD equations
2.8 Classical transport
2.9 Sheath physics and Langmuir probe theory
2.10 Assignments

© Cambridge University Press
www.cambridge.org
Contents

3 Motion of a single plasma particle

3.1 Motivation 75
3.2 Hamilton–Lagrange formalism vs. Lorentz equation 76
3.3 Adiabatic invariant of a pendulum 80
3.4 Extension of WKB method to general adiabatic invariant 83
3.5 Drift equations 88
3.6 Relation of drift equations to the double adiabatic MHD equations 108
3.7 Non-adiabatic motion in symmetric geometry 115
3.8 Particle motion in small-amplitude oscillatory fields 129
3.9 Wave–particle energy transfer 131
3.10 Assignments 142

4 Elementary plasma waves

4.1 General method for analyzing small-amplitude waves 146
4.2 Two-fluid theory of unmagnetized plasma waves 147
4.3 Low-frequency magnetized plasma: Alfvén waves 155
4.4 Two-fluid model of Alfvén modes 164
4.5 Assignments 172

5 Streaming instabilities and the Landau problem

5.1 Overview 174
5.2 Streaming instabilities 174
5.3 The Landau problem 180
5.4 The Penrose criterion 200
5.5 Assignments 203

6 Cold plasma waves in a magnetized plasma

6.1 Overview 206
6.2 Redundancy of Poisson’s equation in electromagnetic mode analysis 206
6.3 Dielectric tensor 208
6.4 Dispersion relation expressed as a relation between \(n_x^2 \) and \(n_z^2 \) 223
6.5 A journey through parameter space 225
6.6 High-frequency waves: Altar–Appleton–Hartree dispersion relation 228
6.7 Group velocity 233
6.8 Quasi-electrostatic cold plasma waves 234
6.9 Resonance cones 236
6.10 Assignments 240
Contents

7 Waves in inhomogeneous plasmas and wave-energy relations 242

- 7.1 Wave propagation in inhomogeneous plasmas 242
- 7.2 Geometric optics 245
- 7.3 Surface waves – the plasma-filled waveguide 247
- 7.4 Plasma wave-energy equation 253
- 7.5 Cold plasma wave-energy equation 255
- 7.6 Finite-temperature plasma wave-energy equation 259
- 7.7 Negative energy waves 260
- 7.8 Assignments 263

8 Vlasov theory of warm electrostatic waves in a magnetized plasma 265

- 8.1 Solving the Vlasov equation by tracking each particle’s history 265
- 8.2 Analysis of the warm plasma electrostatic dispersion relation 272
- 8.3 Bernstein waves 273
- 8.4 Finite \(k \parallel \) dispersion: linear mode conversion 276
- 8.5 Analysis of linear mode conversion 279
- 8.6 Drift waves 289
- 8.7 Assignments 304

9 MHD equilibria 305

- 9.1 Why use MHD? 305
- 9.2 Vacuum magnetic fields 306
- 9.3 Force-free fields 309
- 9.4 Magnetic pressure and tension 310
- 9.5 Magnetic stress tensor 312
- 9.6 Flux preservation, energy minimization, and inductance 314
- 9.7 Static versus dynamic equilibria 316
- 9.8 Static equilibria 316
- 9.9 Dynamic equilibria: flows 328
- 9.10 Assignments 338

10 Stability of static MHD equilibria 342

- 10.1 Introduction 342
- 10.2 The Rayleigh–Taylor instability of hydrodynamics 343
- 10.3 MHD Rayleigh–Taylor instability 346
- 10.4 The MHD energy principle 351
- 10.5 Discussion of the energy principle 365
- 10.6 Current-driven instabilities and helicity 366
- 10.7 Magnetic helicity 367
- 10.8 Characterization of free-boundary instabilities 370
10.9 Analysis of free-boundary instabilities 374
10.10 Assignments 383

11 Magnetic helicity interpreted and Woltjer–Taylor relaxation 385
11.1 Introduction 385
11.2 Topological interpretation of magnetic helicity 385
11.3 Woltjer–Taylor relaxation 392
11.4 Kinking and magnetic helicity 394
11.5 Assignments 407

12 Magnetic reconnection 410
12.1 Introduction 410
12.2 Water-beading: an analogy to magnetic reconnection 412
12.3 Qualitative description of sheet current instability 413
12.4 Semi-quantitative estimate of the tearing process 416
12.5 Generalization of tearing to sheared magnetic fields 424
12.6 Magnetic islands 430
12.7 Assignments 432

13 Fokker–Planck theory of collisions 436
13.1 Introduction 436
13.2 Statistical argument for the development of the Fokker–Planck equation 438
13.3 Electrical resistivity 450
13.4 Runaway electric field 451
13.5 Assignments 453

14 Wave–particle nonlinearities 456
14.1 Introduction 456
14.2 Vlasov nonlinearity and quasi-linear velocity space diffusion 458
14.3 Echoes 473
14.4 Assignments 489

15 Wave–wave nonlinearities 491
15.1 Introduction 491
15.2 Manley–Rowe relations 493
15.3 Application to waves 499
15.4 Instability onset via nonlinear dispersion method 511
15.5 Digging a density hole via ponderomotive force 517
15.6 Ion acoustic wave soliton 523
15.7 Assignments 527
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>Non-neutral plasmas</td>
<td>530</td>
</tr>
<tr>
<td>16.1</td>
<td>Introduction</td>
<td>530</td>
</tr>
<tr>
<td>16.2</td>
<td>Brillouin flow</td>
<td>530</td>
</tr>
<tr>
<td>16.3</td>
<td>Isomorphism to incompressible 2-D hydrodynamics</td>
<td>533</td>
</tr>
<tr>
<td>16.4</td>
<td>Near-perfect confinement</td>
<td>535</td>
</tr>
<tr>
<td>16.5</td>
<td>Diocotron modes</td>
<td>537</td>
</tr>
<tr>
<td>16.6</td>
<td>Assignments</td>
<td>550</td>
</tr>
<tr>
<td>17</td>
<td>Dusty plasmas</td>
<td>556</td>
</tr>
<tr>
<td>17.1</td>
<td>Introduction</td>
<td>556</td>
</tr>
<tr>
<td>17.2</td>
<td>Electron and ion current flow to a dust grain</td>
<td>557</td>
</tr>
<tr>
<td>17.3</td>
<td>Dust charge</td>
<td>559</td>
</tr>
<tr>
<td>17.4</td>
<td>Dusty plasma parameter space</td>
<td>563</td>
</tr>
<tr>
<td>17.5</td>
<td>Large P limit: dust acoustic waves</td>
<td>564</td>
</tr>
<tr>
<td>17.6</td>
<td>Dust ion acoustic waves</td>
<td>568</td>
</tr>
<tr>
<td>17.7</td>
<td>The strongly coupled regime: crystallization of a dusty plasma</td>
<td>569</td>
</tr>
<tr>
<td>17.8</td>
<td>Assignments</td>
<td>579</td>
</tr>
</tbody>
</table>

Appendices

- A Intuitive method for vector calculus identities | 582
- B Vector calculus in orthogonal curvilinear coordinates | 586
- C Frequently used physical constants and formulae | 593

Bibliography and suggested reading | 597
References | 599
Index | 604
Name________________________
Year (Junior, Senior, 1st yr grad, etc.)___________
Option (Aph, Physics, etc.)___________
Registered in class? ______
Address____________________________________
Phone_____________________________________
E-Mail_____________________________________

Schedule
(list classes and obligations)

<table>
<thead>
<tr>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>