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Nonequilibrium Statistical Mechanics 
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147 Noyes 
 

Syllabus 
 

The key to the references is given at the end of this syllabus. 
 
1. Introduction:  Remarks on kinetic theory, linear response theory and time 
correlation functions.  Ref. 1-1, p. 357 
 
2. Elementary kinetic theory:  Number of collisions/area/time; approximate models 
for viscosity η, heat conductivity κ and self-diffusion D; Calculation of κ M/ηCv and 
comparison with experiment and with more exact theory. Ref. Chaps. 16 (pp. 357-365); 
Re, Chap. 13A-13B; He, Chaps. 5.1 to 5.3 (up to p. 183), 5.4.  
 
3. Boltzmann equation, Collisions, and consequences: Collisions, laboratory and 
center of mass systems of coordinates, impact parameter, differential scattering cross-
section, rainbow angle; Boltzmann equation for time-dependent single particle 
distribution function ƒ; Collision term in Boltzmann equation; Rate of change of the 
average of any collisional quantity φ(v, r), particularly φ = 1n ƒ; H-theorem; Steady-state 
(no further increase of entropy); Collisional invariants; Systematic solution of the 
Boltzmann integro-differential equation for the distribution function; Expressions for 
fluxes energy, mass, momentum); Transport coefficients; Role of orthogonal 
polynomials.  Ref. Chap. 19; He, Chap. 5.3.1 to 5.7; Hu, Chaps. 3.1-3.3, 5; K, Chap. 2.7-
2.9, 9.4-9.5; Re, Chap. 13C-13D; W, Chap. in book cited in refs; Z, Chap. 5. 
 
4. Brownian Motion:  Brownian motion and history, 1827-1950s; Random variables, 
stochastic processes; Gaussian random variables and sum of g.r.v.; Brownian motion and 
diffusion; Langevin equation for particle under random and frictional forces; 
Displacement of x in time; Deduction of probability distribution P(x, t⏐xo); Estimate of 
ζ; Velocity autocorrelation function and diffusion, from solution of the Langevin 
equation;  First fluctuation-dissipation theorem; Generalized Langevin equation (GLE); 
Langevin equation and GLE for harmonic oscillator; Correlation function <x (t) x (0)> for 
this harmonic oscillator, and its Fourier-Laplace transform. Liouville operator and 
applications. Ref. Chap. 20; F, Chap. 12; K, Chap. 8; K, Chaps. 1-1.2, 1.5; P, Chap. 6; 
Re, Chap. 15 F; Ha, Chap. 4.1-4.2; Ri, Chaps. 1.1, 3.1; L, Chap. 2-2.2; Z, Chaps. 2 and 3. 
 
5. Time-correlation Functions and Spectroscopy:; Optical absorption and correlation 
function for transition dipole moment; Cumulant expansion and truncation to two-time 
point correlation (Kubo); Role of modulation rate and magnitude in determining shape of 
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optical absorption band (Gaussian, Lorentzian); Implementation of expression for I(ω) 
using harmonic bath for the environment.  Ref., Chap. 21.1-21.6; Z, Chap. 3; Ro, Chap. 
1; LL, Sec 123; D, Chap. 2;  K, Chap. 2-2.2; Han, Chap. 7.1-7.2; Ha, Chap. 6.1. 
 
6. Fokker-Planck and Related Equations:  Stationary process; Markov process, 
stationary; Ornstein-Uhlenbeck process; nonstationary Markov process; Wiener-Levy 
process; Chapman-Kolmogorov equation; Fokker-Planck equation for probability density 
of velocities; Smoluchowski equation; Fokker-Planck equation for distribution of 
velocity and space coordinates; Applications:  free diffusion, molecule in a uniform field, 
damped oscillator; Kramers equation and chemical reactions and limiting cases and 
transition state theory; Deduction of Smoluchowski equation from the more general F.-P. 
equation; Molecular basis of the Langevin equation.  Ref. Chap. 20; F, Chaps. 11-13; vk, 
Chap. 8; P, Chap. 10; D, Chap. 12; Re, Chap. 6G; K, Chap. 2.3-2.4; Han, Chap. 7.3; Ha, 
Chap. 4.3, 6.3-6.6; Ri, Chaps. 4.4-4.8, 5.1-5.5; Z, Chaps 2 and 4. 
 
7. Linear response theory:  Statistical mechanical treatment of linear response;  
Response to an alternating electric field, frequency dependent conductivity σ(ω); Second 
fluctuation-dissipation theorem (random force autocorrelation); Response to electric field 
[σ(ω)], and use of linear response formalism; Comments on fluctuation-dissipation 
theorem for hydrodynamic coefficients; Static structure factor; Dynamic structure factor; 
inelastic neutron scattering; Use of Kramers-Konig relations.  Ref., Chaps.  21.7-21.9; F, 
Chap. 14; Re, Chap. 15 H; LL, Sect. 123-125; K, Chaps. 3-3.2, 4-4.2; D, Chaps. 1, 3; 
Han, Chap. 7.5-7.8; Ri, Chap. 7; L, Chap. 1.4-1.5; Z, Chap. 7. 
 
 References:  "Ref" is an abbreviation for D. A. McQuarrie, Statistical Mechanics 
(Harper, 1976), the principal text for the class.  The other references are C.V. Heer, 
Statistical Mechanics, Kinetic Theory and Stochastic Processes (Academic, 1972) (He); 
N.G. van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, 1983) 
(vK); L.E. Reichl, A Modern Course in Statistical Physics (U. Texas Press, 1980) (Re); 
L.D. Landau and E. M. Lifschitz, Statistical Physics (Vol. 5 of "Theoretical Physics"), 
3rd ed. (Pergamon, 1980) (LL); H. L. Friedman, A Course in Statistical Mechanics, 
(Prentice-Hall, 1985) (F); K. Huang, Statistical Mechanics (Wiley 1987), 2nd ed. (Hu); R. 
Kubo, M. Toda and N. Hashitsume, Statistical Physics.  II.  Nonequilibrium Statistical 
Mechanics, 2nd Ed. (Springer, 1991) (K); H. Risken, The Fokker-Planck Equation 
(Springer, 1984) (Ri); J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids, 2nd 
Ed. (Academic, 1986) (Han); H. Haken, Synergetics, An Introduction to Nonequilibruim 
Phase Transitions and Self-organization in Physics, Chemistry, and Biology (Springer, 
1983) (Ha); S. W. Lovesey, Condensed Matter Physics:  Dynamic Correlations (L); L. 
Waldmann, Chap. in Handbuch der Physik, vol. XII, ed. by S. Flugge (Berlin) (in Ger.) 
(W); W. G. Rothschild, Dynamics of Molecular Liquids (Wiley, 1984) (Ro); J. Keizer, 
Statistical Thermodynamics of Nonequilibrium Processes (Springer, 1987) (K); S. 
Dattagupta, Relaxation Phenomena in Condensed Matter Physics (Academic, 1987), (D); 
H. L. Pecseli, Fluctuations in Physical Systems (Cambridge U. P. 2000) (P); R. Zwanzig, 
Nonequilibrium Statistical Mechanics (Oxford Univ. Press, 2001) (Z).  Z in Chaps. 8 and 
9 contains useful topics (projection operators, nonlinear problems) not considered in the 
outline #1-7.  
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Lecture Topics Summary 

Nonequilibrium Statistical Mechanics 
Tues. & Thurs. 9:00 – 10:25 a.m. 

Chem. 166, Rm. 147 Noyes 
Lecture 1 

Early history of kinetic theory 
Number of collisions/area/time 
Approximate models for viscosity (η), heat conductivity (κ) and self-diffusion (D)  
Calculation of κ M/ηCv and comparison with experiment and with more exact theory 
Boltzmann equation 

Lecture 2 
Collisions. Center of mass and laboratory system of coordinates.  Classical mechanics 

of collisions. 
Differential scattering cross section. 
Scattering angle versus impact parameter 
Rainbow angle 
Inverse Collisions 
Collision term in the Boltzmann equation 

Lecture 3 
Boltzmann transport equation 

 H-theorem, steady-state 
Collisional invariants 
Comments on systematic solution of the Boltzmann integro-differential 

equation for the single particle distribution function 
Expressions for fluxes (energy, momentum)  
Transport coefficients:  perturbative approximation to obtain the single 

particle distribution.  Use of orthogonal polynomials for heat 
conductivity, viscosity and others. 

Lecture 4 
      Boltzmann equation for electrical conductivity in a solid. Solution of 

equation. Einstein relation between mobility and diffusion coefficient. 
Relation between diffusion coefficient and integral of velocity autocorrelation 
function 
Discrete random walk.  Mean square velocity change of colloidal particle.  Stokes Law, and 

Einstein expression for the diffusion constant 
Langevin equation, particle under random and frictional forces 
Solution of Langevin equation for a random variable v: fluctuations of v and mean 

square deviation of v from its mean at time t ; Gaussian random variable: 
deduction of  the probability distribution P(v, t⏐vo,0) from these results 

Lecture 5 
      Probability distribution P(x, t⏐xo.0) deduced from the solution of x(t), mean and                              

mean square deviation of x(t), and Gaussian random variable property of x(t) 
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Expression for 〈 (x – xo)2 〉, when the average is over displacement and then over      
the initial velocity  

Brownian Motion.  History. Difference of Einstein (1905) and Ornstein-Uhlenbeck 
(1930) results. Earlier “paradox” at small t. 

Estimate of ζ.  Dependence of Brownian motion on particle size, viscosity, and  
temperature of particle.  

Lecture 6 
Langevin equation, overdamped harmonic oscillator, mean square 

displacement 
Velocity autocorrelation function (Cvv(t)) of free particleand diffusion, from 

solution of the Langevin equation.  First fluctuation-dissipation theorem. 
Fourier-Laplace transform of Cvv(t)  
Convolution theorem 

      Generalized Langevin equation (GLE).  A particular model for the 
memory function M(t)   

Lecture 7 
      Interlude: Complex variables: Cauchy Residue theorem,  
      Fourier-Laplace transform solution.  
      Generalized Langevin equation (GLE), solution (completed) 

Other examples of M(t) 
Mori-Zwanzig basis for GLE 
Langevin equation for harmonic oscillator with inertia and damping 

Lecture 8 
Relation of correlation function to spectral density, Wiener-Khinchin theorem 
Application ot W-K theorem to harmonic oscillator with inertia and damping. 
Microscopic reversibility and relation between correlation functions 〈A(0)B( t)〉  and 

〈  B(0)A(t)〉 .  Examples 
Assigned as problem: Second fluctuation dissipation theorem (fluctuations of random 

force)  
Lecture 9 

Memory function and correlation function, time scales.   
Memory function. Determination from computations. 
Infrared absorption and Lorentzian  
Characteristic function and moments 
Energy loss of damped harmonic oscillator in liquids 

Lecture 10 

Relation of Langevin equation for several variables to the generalized Langevin 
equation (GLE) for fewer variables, harmonic oscillator as an example 

Cumulant expansion and truncation to two-time point correlation (Kubo) 
Golden Rule.  Optical absorption.  Correlation function for transition dipole 

moment. 
Role of modulation rate and magnitude in determining shape of optical 

absorption band (yielding Gaussian and Lorentzian as limits) 
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Lecture 11 
Role of modulation rate (cont’d) 
Example of expression for I(ω) using harmonic bath for the environment 
Noise,1/f, white and other 

Lecture 12 
1/f 2 noise (Brownian noise)  
Markov process.    
Example of stationary Markov process:  Ornstein-Uhlenbeck process for 

velocity in Brownian motion  
Examples of nonstationary Markov processes: Wiener-Levy process for 

position in Brownian motion; Poisson process for probability of number of 
events in t. 

Calculation of moments and test for stationarity of a random process 
Lecture 13 

Chapman-Kolmogorov equation 
Fokker-Planck equation for distribution of velocities  
Evaluation of < (∆v) >  and < (∆v)2 >  for use in F. P. equation 
Smoluchowski equation for distribution of coordinates and application to 

diffusion     
Lecture 14 

 Smoluchowski equation and application to sedimentation, damped oscillator, 
and chemical reaction rates 

Lecture 15 
Smoluchowski equation and chemical reaction rates (cont’d), including transition state 

and internal diffusion limits  
 F.-P. equation in phase space: distribution of velocity and space coordinates 

   Deduction of Smoluchowski equation from the more general F.-P. equation  
(Kramers) and also by perturbation method, analogous to that used for 
Boltzmann equation 

Example of the extended Langevin equation. Frequency-dependent conductivity 
σ(ω) and its relation to the auto-correlation function of the current density 

Remark:  A topic not given in lectures (problem set 5): Use of    
       harmonic analysis for linear stochastic equations (Langevin equation) 

Lecture 16 
Linear response theory, response function φBA(t) 

Linear response theory, treatment based on regression of fluctuations from a 
nonequilibrium state, relation of response function to a correlation function 

Response to an oscillating force, dynamic susceptibility χBA(ω) 
Work done under time-varying force.  Two related approaches: work done on 

system, work done on force 
Relation of dissipation to the imaginary part of complex susceptibility;  Fluctuation-

dissipation theorem 
Application of linear response theory to infrared absorption spectra, 
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       conductivity, and (Prob.Set 7) dielectric polarization  
Outlined in an instructional handout: Relation between power spectrum and auto-

correlation function of a stochastic variable (Wiener-Khinchin Theorem)  
Lecture 17 

Liouville equation for time-dependent distribution function and statistical mechanics 
of linear response theory. <A(0) B(t)> = (A(-t) B(0)>  

Linear perturbation of distribution function and resulting expression for response 
function 
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