EST/MS/ME 199. Special Topics in Energy Science and Technology Membrane Science and Engineering for Sustainable Energy. 9 units (3-0-6); second term

Winter Term 2013

Prerequisite: Ph 12C or APh 17a or ChE 63, or instructor's permission

Instructor: Prof. Mamadou S. Diallo (KAIST and Caltech)

Guest Lecturers: Prof. John Brady (Caltech), Prof. William Goddard (Caltech), Prof. Sossina Haile (Caltech), Prof. Julie Kornfield (Caltech), Prof. Rachel A. Segalman (UC Berkeley) and Prof. Zhen-Gang Wang (Caltech)

Course Description:

Synthetic membranes are increasingly becoming critical components of a broad range of applications and technologies relating to the energy, environmental, water and sustainability (EEWS) challenges of society. This course will discuss the science, engineering and applications of membrane processes, materials, modules and systems to energy generation, conversion and storage. The course will cover the fundamentals of membrane science and engineering. It will also discuss membrane processes and applications associated with energy conversion, generation, and storage. In addition to weekly lectures by the instructors, the course will also include supplementary lectures and seminars by Caltech and JCAP faculty and scientists investigating energy science and technology for which membranes play an important role. During the final two weeks of class, each student will be asked to utilize the knowledge gained during the course to develop a proposal for utilizing membrane science and engineering to help solve a current and important problem in sustainable energy generation, conversion, or storage.

Textbook: Introduction to Membrane Science and Technology by Henrich Strathmann (ISBN: 978-3-527-32451-4)

Course Organization

Weekly lectures (Wednesday and Friday from 2:00-3:30 pm)
Supplementary guest lectures and seminars
Homework (4 problem sets)
Term Paper (Presentations and Written Report)

Grading Policy Homework (60%) Term paper (40%)

Course Content and Schedule (Winter Term 2013)

Period	Content	Period	Content
Lecture 1: Diallo	Introduction and Overview of Membrane	Lecture 12: Diallo	Membranes for Solar Fuel
Date: (Week 1: January 7)	Science and Engineering	Date: (Week 6: February 15)	Generation: Water-Energy Nexus
Lecture 2: Diallo	Membrane Separation Processes for	Lecture 13 (Guest): Segalman	Membranes for Solar Fuel
Date: (Week 1: January 11)	Sustainable Energy	Date: (Week 7: February 20)	Generation: Photocatalytic and
			Proton Conducting Membranes
Lecture 3: Diallo	Thermodynamics and Electrochemistry	Lecture 14: Diallo	Membranes for Solar Fuel
Date: (Week 2: January 16)	in Membrane Systems	Date: (Week 7: February 22)	Generation: Water and Gas
			Separation Membranes
Lecture 4: Diallo	Mass and Charge Transport in Membrane	Lecture 15 (Guest): Brady	Energy Generation from Salinity
Date: (Week 2: January 18)	Systems	Date: (Week 8: February 27)	Gradients: Fundamentals and
			Applications of Osmosis
Lecture 5: Diallo	Mass and Charge Transport in Membrane	Lecture 16: Diallo	Energy Generation from Salinity
Date: (Week 3: January 23)	Systems (Cont)	Date: (Week 8: March 1)	Gradients: Pressure Retarded
			Osmosis and Reverse
			Electrodialysis Membranes
Lecture 6: Diallo	Overview of Membrane Materials,	Week 9: March 8 and 13	Student Term Project
Date: (Week 3: January 25)	Modules and Systems for Energy	(Diallo and Goddard)	
	Conversion, Generation and Storage		
Lecture 7 (Guest): Kornfield	Preparation of Polymeric Membranes for	Week 10: March 15 and 20	Student Term Project
Date: (Week 4: January 30)	Sustainability: Fundamentals of Polymer	(Diallo and Goddard)	
	Science and Engineering	W 1 10 M 1 22	
Lecture 8 (Guest): Wang	Preparation of Polymeric Membranes for	Week 10: March 22	Completion of Student Term
Date: (Week 4: February 1)	Sustainability: Phase Equilibrium and Microstructures in Polymer Solutions		Projects and Presentations
Lecture 9: Diallo	Membranes for Fuel Cells: Preparation		
Date: (Week 5: February 6)	and Characterization of Polymer		
	Electrolyte Membranes for Fuel Cells		
Lecture 10: Goddard	Membrane for Fuel Cells: Multiscale		1
Date: (Week 5: February 8)	Modeling of Polymer Elelectrolyte Fuel		
	Cell Membranes		
Lecture 11 (Guest): Haile	Membranes for Fuel Cells: Preparation		
Date: (Week 6: February 13)	and Characterization of Solid Oxide Fuel		
()))))))))))))))))))))))))))))))))))))	Cell Membranes		