ME 119a - Heat Transfer: Conduction and Radiation Tuesday, Thursday, 1:00-2:25 pm Location: Thomas Building, Room 306

Instructor:	Prof. Austin Minnich, 323 Thomas <i>Email</i> : <u>aminnich@caltech.edu</u> <i>Office hours</i> : To be announced <i>Admin</i> : Maria Koeper, 321 Thomas, mkoeper@caltech.edu		
TA:	Gerry Della Rocca Email: gdr@caltech.edu Office hours/Location: To be announced		
Class Website:	https://courses.caltech.edu/course/view.php?id=781 (ME119a on courses.caltech.edu)		
Prerequisites:	Basic principles of thermodynamics, vector calculus, some experience with first and second-order ODEs, and linear PDEs.		
Reference Texts:	 "A Heat Transfer Textbook", J. H. Lienhard. Available for free at http://web.mit.edu/lienhard/www/ahtt.html "Fundamental of Heat and Mass Transfer", F.P. Incropera & D.P. DeWitt "Basic Heat & Mass Transfer", A. F. Mills "Thermal Radiation Heat Transfer", R. Siegel & J.R. Howell "Radiative Heat Transfer", 2nd ed, Michael Modest 		
Exams:	Midterm:Oct $26 - Nov 1$ Take homeFinal:Dec $7 - 9$ Take home		
Problem Sets:	Weekly problem sets will be assigned on Thursday and are due by Thursday of the following week. You may discuss homework problems with other students, but each student must turn in work that represents his/her own efforts. Late work is accepted with valid excuses, but must be discussed well in advance with the instructor.		
	Problem sets are due in class. Solutions will be posted online.		
Grades:	Problems:25 %Midterm Exam:30 %Final Exam:45 %		
Honor Code:	All members of the Caltech community are expected to adhere to the Honor Code, which states, "No member of the Caltech community shall take unfair advantage of any other member of the Caltech community." Honor Code violations will be reported to the appropriate governing body. Students are also reminded "every member must share the responsibility of protecting the Caltech community and perpetuating the Honor System."		

WEEK:	LECTURES + EVENTS	PROBLEM SETS DUE
Sep 26	Introductory concepts; gas	
	kinetics	
Oct 3	Gas kinetics;	Th, Oct 6
	Conservation equations	
Oct 10	Steady heat conduction;	Th, Oct 13
	thermal resistance, fins	
Oct 17	Transient heat conduction,	Th, Oct 20
	lumped capacitance, one-	
	term approximation	
Oct 24	Multi-dimensional heat	Th, Oct 27
	conduction; numerical	
	methods; transforms	
Oct 26 – Nov 1	Midterm exam period	
Oct 31	Introduction to radiation	
	Black bodies, photon gas	
Nov 7	Diffuse surface transfer,	Th, Nov 10
	enclosures, viewfactors	
Nov 14	Equation of radiative	Th, Nov 17
	transfer; absorbing media	
Nov 21	Coupled problems –	Tu Nov 29
	radiation+conduction	
Nov 28	Heat transfer at short length	Th, Dec 1
	and time scales; review	
Dec 7 – 9	Final exam period	

Schedule of Lectures and Other Events