MS 090 Materials Science Laboratory

Spring Quarter 2012

Catalog Data: MS 90. Materials Science Laboratory. 9 units (1-6-2); third

term. An introductory laboratory in relationships between the structure and properties of materials. Experiments involve

materials processing and characterization by X-ray

diffraction, scanning electron microscopy, optical microscopy and other techniques. Students will learn techniques for measuring mechanical and electrical properties of materials,

as well as how to optimize these properties through

microstructural and process control.

Textbook: Laboratory Handouts, Various ASTM Standards

Prerequisites: MS 115

Course Objectives: The objective of this course is to familiarize students with a

variety of materials characterization techniques commonly used in research and in industry. They will learn a number of laboratory techniques, simple data analysis, and standard reporting methods. Students will learn to apply theory to engineering problems, to perform experiments to obtain reliable data, to communicate the results of the engineering

activities, and to develop a better understanding of the

selection and use of materials

Lecture Topics:

- 1. Introduction overview of characterization techniques Bulk Measurements Charpy (Izod), Bending, Tensile / Compression, hardness, creep.
- 2. Sample preparation, measurements and errors, (Lab 1 Overview).
- 3. Imaging Techniques Light Microscopy, SEM (Lab 2 Overview).
- Diffraction Techniques XRD (Lab 3 Overview).
- 5. Electron Beam and Scattering EDS, RBS (Lab 4 Overview).
- 6. Thermal Measurements TMA, DSC, DMA, TGA, Laser Flash (Lab 5 Overview).
- 7. Physical and Electrical Measurements AFM, BET, Profilometry (Lab 6 Overview)...
- 8. Mass Spec and SIMS
- 9. Electron Emission XPS, Auger
- 10. Summary

Equipment, Location

- 3-point bending (Johnson)
- Hardness (Rockwell) (Johnson)
- Sample preparation (Johnson)
- Optical Microscope (Basement)
- Charpy (Johnson)

- Instron (Johnson)
- SEM (Geology)

Laboratory

Lab #	Name	Equipment	Samples	Reference
1	3-Point bending	3- Point	90 quartz rods	ASTM D 790
	Notch size	Bending set-		Weibull
	Surface treatment	up		
2	Partially work-hardened	Rockwell and	12 Brass	ASTM E18-08b
	Brass "Jominy" sample	Vickers	Ingots	ASTM 384 ASTM 140
	Rockwell Hardness	Hardness		Hardness tester
		Testers		instructions
3	Sample preparation	Metallurgical	Brass Ingots	Conner
	Optical Microscopy	Microscope	from Lab 1	Pirtz et al, Berkeley
	Grain size determination	with image		Articles by Thompson
	Grain Orientation	capture		and Mendleson
4	DBT and Charpy Testing	Charpy Tester	50 Charpy	ASTM E23
			1020 or 1018	
5	Tensile testing	Instron	20 tensile	ASTM E8
	Stress-strain	Calipers	samples	Instron instructions
	Engineering Strain	-		
6	SEM - EDS	SEM/EDS		Goldstein, Newbury
				SEM Instructions

Course Schedule:Time:Room:Instructor/TALecture:M 11:00-11:50MRH 80A.A.Shapiro/S. Roberts,

Laboratory WF 9:00-12:00 TBD

Instructor: Andrew A. Shapiro, Lecturer in Materials Science and Applied Physics, Visiting Associate in Aerospace

Office: 212 Firestone **Tel:** 818 393-7311

email: aashapiro@caltech.edu TA Office Hours: TBD

Attendance Policy: Attendance is required for all laboratories

Grading Criteria: 6 completed laboratory reports are required to pass the course. Reports must be turned in at the lecture after completion of the laboratory work. Each lab must be completed during the assigned week. Late lab reports will automatically be downgraded one letter grade. There will be a quiz given at the lecture each week.

Laboratory Report = 90%

Quizzes = 10%

In this class, students must turn in individual laboratory reports for every laboratory although in some labs students may be required to work in small teams. Students may work together, although each student is required to independently write up their own laboratory report.