Ph223bc "Advanced Condensed Matter Physics" (2011 -- 2012)

INSTRUCTOR: Professor Nai-Chang Yeh

(Office: 120 Bridge

Phone: x-4313

E-mail: ncyeh@caltech.edu)

SCHEDULE: Tuesday & Thursday 9:00 - 10:30

LOCATION:

Downs 107

In Taiwan > { x

GTA:

Shu-Ping Lee

(Office: 156 Bridge E-mail: shupinglee@caltech.edu)

INFORMATION: http://www.its.caltech.edu/~yehgroup/ph223bc_2011

1/10 Ma ←補課/03

I. Introduction: Review of Second Quantization Techniques & Quantum Dynamics

- > Overview of modern condensed matter physics.
- > Review of the second quantization techniques.
- > Review of pictures of quantum dynamics and time-dependent perturbation theory.
- > Low-energy excitations in condensed matter.

II. Non-Relativistic Quantum Field Theory for Many-Body Systems

- > Basic properties of Green functions.
- > Temperature-dependent quantum field theory in the path integral formalism.
- > The physical meaning of Green functions.
- \triangleright Non-interacting Green functions at T = 0 and T > 0.
- \triangleright Interacting Green functions and Lehmann representation at T = 0 and T > 0.
- > Relating Green functions to physical observables.
- > Wick's theorem.
- > Application of Green functions to diagrammatic analysis and perturbation theory.

III. Applications of Green Function Techniques to Interacting Electrons & Phonons

- Hartree-Fock approximation.
- > Random phase approximation.
- > Linear response theory & the Kubo formalism.
- Phonons.
- Electron-phonon interactions.

IV. Fermi Liquid Theory

- > Overview of the Fermi liquid theory phenomenology.
- > Vertex contributions to the Fermi liquid theory the quantum-field approach.

- > Basic physical relations of the Fermi liquid theory and bosonic excitations.
- > Fermi-liquid theory with non-perturbative strong interactions: the Kondo effect.

V. Breakdown of the Fermi Liquid Theory & the Luttinger Liquids

- > Limitations of Fermi liquid theory.
- > The Tomonaga-Luttinger liquid theory.

VI. Interacting Bosons and Superfluidity

- \triangleright Basic formalism for interacting bosons at T=0.
- > Perturbation theory and Feynman rules.
- Weakly interacting bosons.
- \triangleright Field theory of interacting bosons at $T \neq 0$.
- Bosonic superfluid in liquid helium.

VII. Gauge Theory

- > Gauge invariance.
- > Magnetic monopole & Aharonov-Bohm effect.
- > Symmetry, spontaneous symmetry breaking, and the Nambu-Goldstone bosons.
- Non-abelian gauge theory.
- > Anderson-Higgs mechanism.

VIII. Conventional Superconductivity

- > Phenomenology of superconductivity.
- > The Cooper instability and electron pairing.
- Microscopic theory of superconductivity by Bardeen, Cooper and Schrieffer (BCS).
- > Thermodynamic properties of superconductors.
- > Theory of quasiparticle and Cooper pair tunneling.*
- > Heavy-fermion superconductors.*

IX. High-Temperature Superconductivity in the Cuprates & Iron-Based Compounds

- > General properties of high-temperature superconducting cuprates.
- Microscopic models to high-temperature superconductivity from Hubbard and t-J models.
- > Recent development in phenomenology.
- > A new class of high-temperature superconductors: the iron-based compounds.*
- ➤ Outlook.*

X. Topological Field Theory

- > Topological objects: solitons, vortices, and hedgehogs field theory beyond Feynman diagrams.
- > Integer and fractional quantum Hall effects in two-dimensional electron gas.
- > Braid groups, permutation groups, and fractional statistics.
- > Effective theory of the fractional quantum Hall liquids and topological orders.
- > Edge excitations of the fractional quantum Hall liquids.
- > Quantum spin Hall effect and topological insulators.*

* Elective topics, depending on availability of time.

Reference Books:

- "Quantum Theory of Many-Particle Systems", A. L. Fetter and J. D. Walecka, Dover Publications, Inc. (2003). [ISBN: 0-486-42827-3]
- 2. "Methods of Quantum Field Theory in Statistical Physics", A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski, Dover Publications, Inc. (1975). [ISBN: 0-486-63228-8]
- 3. "Quantum Field Theory in a Nutshell", A. Zee, Princeton University Press (2003). [ISBN: 0-691-01019-6]
- 4. "Quantum Field Theory of Many-Body Systems", X.-G. Wen, Oxford University Press (2004). [ISBN: 0-19-853094-3]
- "Quantum Theory of Solids", C. Kittel, John Wiley & Sons, Inc. (1987). [ISBN: 0-471-62412-8 (pbk.)]
- 6. "Fractional Statistics and Quantum Theory", A. Khare, 2nd Edition, World Scientific (2005). [ISBN: 981-256-160-9]
- 7. "Theory of Superconductivity", J. R. Schrieffer, Westview Press (1999). [ISBN: 0-7382-0120-0]